Chromatic number and complete graph substructures for degree sequences
نویسندگان
چکیده
Given a graphic degree sequence D, let χ(D) (respectively ω(D), h(D), and H(D)) denote the maximum value of the chromatic number (respectively, the size of the largest clique, largest clique subdivision, and largest clique minor) taken over all simple graphs whose degree sequence is D. It is proved that χ(D) ≤ h(D). Moreover, it is shown that a subdivision of a clique of order χ(D) exists where each edge is subdivided at most once and the set of all subdivided edges forms a collection of disjoint stars. This bound is an analogue of the Hajós Conjecture for degree sequences and, in particular, settles a conjecture of Neil Robertson that degree sequences satisfy the bound χ(D) ≤ H(D) (which is related to the Hadwiger Conjecture). It is also proved that χ(D) ≤ 6 5 ω(D) + 3 5 and that χ(D) ≤ 4 5 ω(D) + 1 5 ∆(D) + 1, where ∆(D) denotes the maximum degree in D. The latter inequality is a strengthened version of a conjecture of Bruce Reed. All derived inequalities are best possible.
منابع مشابه
The distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملA new approach to compute acyclic chromatic index of certain chemical structures
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorica
دوره 33 شماره
صفحات -
تاریخ انتشار 2013